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Abstract    ....

This paper describes a videogrammetric technique for
determining aerodynamic loads based on optical elastic
deformation measurements.  The data reduction methods
are developed to extract the normal force and pitching
moment from beam deformation data.  The axial force is
obtained by measuring the axial translational motion of a
movable shaft in a spring/bearing device.  Proof-of-concept
calibration experiments are conducted to assess the
accuracy of this optical technique.

1. Introduction
Internal strain gauge balances have been used for years

as a standard technique for measuring the integrated
aerodynamic forces and moments in wind tunnels.  A
variety of internal strain gauge balances have been
developed and the technical aspects of various balances
have been studied in detail [1].  Generally speaking, the
structure of an internal strain gauge balance is complicated
and the cost of fabrication is high.  This paper presents an
exploratory study for remotely measuring aerodynamic
loads using a videogrammetic system.  Unlike strain
gauges, this method optically measures beam deformation
to determine the normal force and pitching moment.  The
axial force is obtained by measuring the translational
motion of a movable shaft in a spring/bearing device.
Mathematical models for data reduction are developed to
extract the aerodynamic forces and moments from
deformation data.  Uncertainty analysis is given to evaluate
the contributions from the elemental error sources and
correlation terms.  At this stage, the normal force, pitching
moment, and axial force are the primary quantities to be
determined.  In principle, the side force, rolling moment,
and yawing moment can be determined in a similar manner.
Proof-of-concept laboratory experiments have been
conducted to validate the proposed methodology of
measuring the aerodynamic loads.  Potentially, the optical
method can be used as an alternative to strain gauge
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balances.  In addition, the technique described in this paper
can be easily integrated with the optical model attitude
measurement techniques [2,3].

2. Cantilever Beam Deformation
Deformation of a cantilever beam is utilized to

calculate the normal force and pitching moment.  Consider
a cantilever beam bent by a force F and a moment M
applied at the end, as shown in Fig. 1.  According to the
engineering beam theory in which the deformation due to
shear strain is assumed to be negligible [4], the normal
coordinate v of the beam is described by

M)xL(Fv)x(EI xx −−−= , (1)
where xxv  is the second derivative with respect to x, M is
the local bending moment, E is the modulus of elasticity,
and I(x) is the moment of inertia.  The boundary conditions
are 0xx v)0x(v ==  and 0v)0x(v == .  The solution for
the displacement xvvvv 0x0 −−=δ  is
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For a rectangular cross-section beam, the moment of inertia
is 12/whI 3= , where w is the width and h is the height of
the cross-section.  For a circular cross-section beam, the
moment of inertia is 4/RI 4π= , where R is the radius of
the circular cross-section.  When a beam has a constant
cross-section and the moment of inertia is constant, the
expression (2) becomes
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Therefore, the local displacement vδ  and the slope change

0xxx vvv −=δ  are
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where MFLM c +=  is the moment with respect to a
moment center c.  Eq. (4) gives a linear relation between
the deformation )v,v( xδδ  and the force and moment
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)M,F( c .  When the deformation due to shear strain is
taken into account, a more complete analysis of a
rectangular cantilever beam gives a non-linear relation [5]
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A generalized relation can be written as
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where ijC  are the coefficients to be determined in
calibration tests using the least-squares method.  These
theoretical results provide basic models for data reduction
to recover the force and moment.  Generally, given the
force and moment, the theoretical relations describe beam
deformation profiles well.  However, inversion to the force
and moment from deformation measurements is a ‘stiff’
problem that is very sensitive to small errors.  In practical
data-reduction procedures, these theoretical results will be
combined with empiricism to deal with imperfections in the
real measurements.

3. Data Reduction Methods
3.1. Method based on local displacement and slope

Eqs. (4) and (5) indicate that the force F and moment
cM  depend on the local displacement vδ  and the change

of slope xvδ .  Therefore, )M,F( c  can be determined
from measurements of )v,v( xδδ .  Here, the pitching
moment cM  is defined as )LL(FM cc −= , where L is the
distance between the force (load) location and the beam
support and Lc is the distance between the moment center c
and the support.  The local displacement and the change of
slope are

refrefxref x)x(v)x(v)x(vv −−=δ
)x(v)x(vv refxxx −=δ , (7)

where xref is the reference location where deformation is
small such as the position near the support.  Instead of
directly using the definition (7), the practical procedures for
calculating )v,v( xδδ  are based on the affine
transformation because of its robustness.

The quantities vδ  and xvδ  are calculated from the
optically measured coordinates of high-contrast targets on
the beam.  Figure 2 shows a typical layout of targets on a
beam (sting) assembled to a wind tunnel model.  A row of
targets, denoted by B in Fig. 2, is placed in parallel to the
beam centerline near the wind tunnel model.  Another row
of targets, reference targets denoted by A, is placed near the
support of the beam.  When the beam is deflected by
aerodynamic loads, not only the targets at B move, but also
the reference targets at A may move slightly since the
support is not absolutely rigid.  Thus, the total movement of
target row B contains both the relative deformation at B

with respect to A and the local movement at A.  The local
deformation at B, which is more sensitive to loads, can be
obtained by removing the local movement at A from the
total movement at B.

In order to correct the movement of the reference target
row A due to loads, the load-off (or wind-off) position of
the target row A is used as a baseline position.  Assuming
that the local movement of the reference target row A can
be approximated as rigid-body motion, one obtains the
affine transformation between the load-off coordinate

)Z,X(
~~

 and load-on coordinate )Z,X(  for the reference
target row A
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where AR  is the rotational matrix
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Aθ  is a rotational angle at A, and TxA and TzA are the
translations at A.  The coordinate system )Z,Y,X(  is a
standard wind-tunnel coordinate system in which X is in the
free-stream flow direction, Y is in the spanwise direction of
a wind-tunnel model at zero angle-of-attack, and Z is in the
vertical direction.  The beam deformation is in the )Z,X(
plane.  The rotational angle Aθ  and the translations (TxA,
TzA) can be determined from the measured load-off and
load-on coordinates of target row A by using the least-
squares method.

Applying the affine transformation (8) to the load-on
coordinates of the target row B, we are able to eliminate the
effect of the local movement at A.  We denote the
transformed load-on coordinates of target row B by

)Z,X( Bon
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~

 and call them the re-aligned load-on
coordinates of target row B relative to the reference load-
off target row A.  The re-aligned load-on coordinates
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 of the target row B are related to the

corresponding load-off coordinates )Z,X( Boff
~

Boff
~

 by the
affine transformation
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where BR  is the rotational matrix
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The change of the bending angle at B is Bθ  and
)T,T(∆ zBxB=Br  is the displacement vector at B.  The
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values of Bθ  and )T,T(∆ zBxB=Br  can be determined by
using the least-squares method and they are the average
quantities of local deformation for target row B.  Therefore,
the change of the slope at B due to loads is simply

)tan(v Bx θδ = . (12)
The normal displacement vδ  at B due to loads is

BB ∆v rn •=δ , (13)
where Bn  is the unit vector normal to the beam axis at B.

In reality, the relationship between )M,F( c  and
)v,v( xδδ  is more complicated than theoretical prediction

by the engineering beam theory.  The relations for
calculating )M,F( c  are generally expressed as

)v,v(fF x1 δδ=  and )v,v(fM x2c δδ= . (14)
In practice, we do not tend to globally fit the whole set of
calibration data to obtain the complete functional relations.
Instead, for a given data point )v,v( xδδ , we use a local
2nd-order polynomial to interpolate a group of neighboring
calibration data points, that is,

δδδδ1B=F  and δδδδ2B=cM , (15)
where δ  is the deformation vector defined as

T2
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and 1B  and 2B  are the coefficients determined by
calibration.

A simple model approach can be also used to recover
(F, Mc) from given )v,v( xδδ .  It is found that for a
suitably chosen moment center cL , the moment

)LL(FM cc −=  is simply a linear function of either vδ
or xvδ .  This is a reduced case in which vδ  is
proportional to xvδ .  In this case, the moment cM  is given
by a simple proportional relation

)v()LL(FM cc δα=−= , (16)
where α  is a proportional constant determined by
calibration.  The best moment center cLx =  to achieve the
linearity given by Eq. (16) can be determined by an
optimization scheme.  In addition, an empirical relation
between F and vδ  is

F])LL()LL([v 2
c2c10

−+−+= βββδ , (17)

where 0β , 1β , and 2β  are constants determined in
calibration.  Eliminating )LL( c−  in Eqs. (16) and (17),
one obtains a 2nd-order algebraic equation for F

0MF)vM(F 2
c2c1

2
0 =+−+ βδββ . (18)

In principle, F and Mc can be obtained from Eqs. (16) and
(18) for a given vδ .  However, Eq. (18) has two real roots
that are often close each other.  It is not easy to choose the
correct solution without a good initial guess of F.  This is a
shortcoming of the simple model approach.

3.2. Method based on global beam deformation profile
From Eq. (3), one knows that the displacement vδ

along the beam axis can be described by the theoretical
relation

32 xbxa)x(v +=δ , (19)
where x is the coordinate along the beam axis, vδ  is
obtained using Eq. (13), and the coefficients a and b are
related to F and Mc.  However, the relation between (a, b)
and )M,F( c  is not as simple as that given by Eq. (3).  The
empirical relations are symbolically expressed as

)b,a(fF 1=  and )b,a(fM 2c = . (20)
For a given data point )b,a( , a local 2nd-order polynomial
fit to a group of neighboring calibration data points is used
to recover )M,F( c .

As an alternative, we also use a simple model approach
to calculate )M,F( c .  The empirical functional relations
are

F])LL(a)LL(aa[a 2
c2c10 −+−+=

F])LL(b)LL(bb[b 2
c2c10 −+−+= , (21)

where )a,a,a( 210  and )b,b,b( 210  are determined in
calibration.  The solution to Eq. (21) is

)c2/()cc4cc(LL 202
2
11c −±−=−

])LL(a)LL(aa/[aF 2
c2c10 −+−+= , (22)

where 000 ab/abc −= , 111 ab/abc −= , and

222 ab/abc −= .
3.3. Uncertainty

For uncertainty analysis, consider the general
functional relations between )M,F( c  and )v,v( xδδ

),v,v(fF x1 pδδ=  and ),v,v(fM x2c qδδ= , (23)
where ]p,p,p[ N21 �=p  and ]q,q,q[ N21 �=q  are
the parameters characterizing the functional relations.
Standard uncertainty analysis [6] gives the error
propagation equations for the relative variances of F and
Mc,
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where the sensitivity coefficients are

)p/F)(/Fp(S iip1 i
∂∂= ,
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)q/M)(/Mq(S icciq2 i
∂∂= ,

)ν/F)(/Fν(S1 δδδν ∂∂= ,

)ν/F)(/Fν(S xx1 x
δδδν ∂∂= ,

)ν/M)(/Mν(S cc2 δδδν ∂∂= , and

)ν/M)(/Mν(S xccx2 x
δδδν ∂∂= .

The correlation coefficient ),R( ji ζζ  between the

variables iζ  and jζ  is defined as
1/2

jijiji )]ζvar()ζvar()/[ζζcov(),R( =ζζ , and the

variance and covariance are ><= 2
ii ∆ζ)(ζvar  and

><= jiji ∆ζ∆ζ)ζ(ζcov , where the notation ><  denotes

the statistical assemble average and ><−= iii∆ζ ζζ  is
the variation.  There are two types of contributions to the
total uncertainties in F and Mc.  The summation terms in the
right-hand side of Eqs. (24) and (25) are the uncertainties in
fitting the coefficients p  and q  in the data-reduction
models.  The other three terms in the right-hand side are the
uncertainties in measurements of )v,v( xδδ .  The
uncertainties in measurements of )v,v( xδδ  are
determined by the accuracy of the camera calibration (about
1:60000 for the videogrammetric system used).  In addition,
an important error source that is not included in Eqs. (24)
and (25) is a bias error in the data-reduction mathematical
model itself since the model may fail to describe correctly
actual measurement processes.

The last terms in the right-hand side of Eqs. (24) and
(25) are the correlation terms that are more intriguing since
they could be positive or negative.  The total uncertainties
decrease when the correlation terms are negative and
otherwise the total uncertainties increase.  Based on the
linear theoretical relation (4), the correlation between vδ
and xvδ  can be calculated, that is,
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The correlation terms in Eqs. (23) and (24) are
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The correlation terms are negative for
)LL(3x)LL(2 cc −<<−  and LL0 c << .  Furthermore,

at a fixed target location rLx =  ( 1r ≤ ), the correlation
terms are negative when the moment center cLx =  is in

3/L)r3(L2/L)r2( c −<<− .  This analysis indicates
that the moment center can be suitably selected to reduce
the total uncertainties in measurements.

4. Videogrammetric System
In this study, elastic deformation of a beam is

measured using a videogrammetric system.  Based on the
principles of close-range photogrammetry, the
videogrammetric system measures the coordinates of
targets distributed along the beam from target centroids in
digital images.  Deformation of the beam is then calculated
from the measured target coordinates.  Figure 3 shows a
schematic of a two-camera videogrammetric system for
deformation measurements.  Basic hardware of the system
consists of two Hitachi KP-F1 CCD cameras with 15-mm
lenses, a Dell PC with a Matrox Pulsar frame grabber
board, light sources and retro-reflecting targets on the
beam.  Software includes programs for image acquisition,
target-tracking/centroid calculation, and camera calibration.
This system is able to provide three-dimensional
coordinates (X, Y, Z) in almost real time.  The accuracy of
the videogrammetric system used for this work is typically
1:60000.  After the coordinates of the targets on the beam
are obtained, the deformation ( vδ , xvδ ) can be calculated.
The data-reduction programs for calculating the
deformation, force and moment are written in Matlab.  The
technical aspects of the videogrammetric system have been
described in detail by Liu et al. [7,8].  Comprehensive
reviews of application of videogrammetry to wind tunnel
testing have been given by Burner & Liu [2], and Liu et al.
[8].

5. Experimental Results
5.1. Simple beams

Figure 4 shows a standard balance calibration
apparatus and a two-camera videogrammetric system.
Three simple beams have been calibrated to examine the
proposed methodology of recovering the normal force and
pitching moment (see Fig. 5).  One is a brass beam with a

in75.0in75.0 ×  square cross-section and the rigidity of
310350EI ×=  lb-in2.  A more flexible stainless steel beam

is actually a flat plate that has a rectangular cross-section of
in25.0in5.1 ×  and the rigidity of 31047EI ×=  lb-in2.  A

more rigid stainless steel beam was also used, which has a
circular cross-section with a diameter 0.75in and the
rigidity of 310442EI ×=  lb-in2.  A number of retro-
reflecting targets used for deformation measurements are
placed along the centerline of a beam.

Figures 6 and 7 show the local displacement and slope
change ( vδ , xvδ ) as a function of the normal force for the
brass beam at four different loading positions.  It is found
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that the dependence of both the local displacement and
slope change on the pitching moment is linear when the
moment center is suitably chosen.  The linear relations are
clearly shown in Fig. 8 for the brass beam, where the
moment center determined by an optimization scheme is
located at Lc = 9.03 in.  This linearity is utilized in the
simple model method for data reduction.  Figure 9 shows
the errors in measurements of the normal force and pitching
moment by using the method based on local displacement
and slope change for the brass beam.  The local 2nd-order
polynomial and the simple model methods are used for data
interpolation.  For the soft and stiff stainless steel beams,
Figure 10 shows the measurement errors in the normal
force and pitching moment.  Typically, the relative errors in
the normal force and pitching moment are within ±10% and
±5%, respectively.

The method based on global deformation profile is
used to recover the normal force and pitching moment for
the brass beam.  Figure 11 shows measured deformation
profiles of the brass beam for different loads at the loading
position L = 28.069 in.  These measured data can be well fit
by the theoretical solution 32 xbxa)x(v +=δ .  The errors
in measurements of the normal force and pitching moment
are shown in Fig. 12, where the local 2nd-order polynomial
and simple model methods are used for data interpolation.
Compared to the method based on the local displacement
and slope change, the method based on the global
deformation profile gives smaller relative errors in the
normal force (within ±5%) and pitching moment (within
±3%) for the brass beam.
5.2. Sting-model combination

A steel sting-model combination used in the Unitary
Tunnel at NASA Langley was calibrated, as shown in Fig.
13.  The sting has a tapering circular cross-section with a
linearly decreasing radius from 0.5975in. to 0.197in.
Accordingly, the rigidity decreases from 3102800×  to

31038 ×  lb-in2 and the mean rigidity of the sting is
310930×  lb-in2.  In calibration tests, the maximum

displacement of the sting is about 0.03in and the maximum
change of the local bending angle is about 0.23 degrees.
Two strain gauge bridges were also installed on the sting
for measurement of the normal force and pitching moment,
allowing a direct comparison between the strain gauge
method and the optical method.

During calibration tests, a number of dead weights
from 2 lb to 10 lb were loaded at three different locations
on the model to generate the required forces and moments.
Three retro-reflecting targets were placed near the model
for measuring local deformation and four other targets were
placed near the support as a reference.  The local
deformation quantities ( vδ , xvδ ) were measured using the
videogrammetric system.  The method based on the local
displacement and slope change was used to determine the
normal force and pitching moment.  Figure 14 shows the

measurement errors in the normal force and pitching
moment for this steel sting-model combination.  The results
indicate that the optical method based on remote
deformation measurement is less accurate than the more
sensitive strain gauges.  The relative errors in the normal
force and pitching moment obtained by the optical method
are about ±5% in comparison with ±2% given by the strain
gauges.
5.3. Three-force beam

In order to measure the axial force along with the
normal force and pitching moment, a three-force beam has
been designed and fabricated.  As shown in Fig. 15, the
three-force beam consists of a simple beam and a
spring/bearing device that only allows translational motion
along the beam axis.  The structure of the spring/bearing
device is shown in Fig. 16.  A steel axial load shaft (made
of medium-alloy A-2 steel) is a moving rod that is
constrained by a linear bearing mounted inside the
hardware assembly.  The rod is hardened and has a ground
surface finish of 0.625 (+0.0002/-0.0000) inches on the
diameter.  This tight tolerance allows a very close interface
fit with the bearing so all lateral movement is minimized.
Another main component of the device is the spring that
balances the applied axial force.  Ranges of the springs with
different spring constants are available and can be selected
to meet the requirements of the axial force calibration.  The
three-force beam attaches to the extended end of the 0.625
diameter stainless steel beam.  The device housing has an
outside diameter of 2.38 inches and is 6.0 inches long with
an extended length of the entire beam assembly of 28.25
inches in the balance calibration apparatus.  As shown in
Fig. 15, a number of retro-reflecting targets are placed on
the simple beam for measuring beam deformation.  Four
targets are placed on the spring/bearing device as a
reference and the other four targets are placed on the
movable shaft for measuring the axial translational motion
relative to the reference targets.  The average spacing
between retro-reflective targets is approximately 0.65
inches.

The normal force and pitching moment are obtained by
using the same methods as previously described.  The
measurement errors in the normal force and pitching
moment are shown in Fig. 17, indicating ±4% errors for the
normal force and ±3% errors for the pitching moment.  The
axial force axF  is related to the axial displacement xδ  by a
linear relation

xkFF 0axax δ=− , (28)
where k is an effective spring coefficient and 0axF  is the
force at 0x =δ .  When the normal force NF  and pitching
moment cM  exist, k and 0axF  are not constants and they
are weakly dependent on NF  and cM  due to the presence
of friction in the bearing.  Experiments show that k and

0axF  are mainly related to the loading position Nc F/M
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over a certain range of the normal force.  Thus, an empirical
calibration relation for the axial force is

)F/M(Fx)F/M(kF Nc0axNcax += δ , (29)
where )F/M(k Nc  and )F/M(F Nc0ax  are empirically
expressed by polynomials.  Figure 18 shows the linear
relation between the axial force and the measured axial
displacement.  As shown in Fig. 19, the measurement errors
in the axial force obtained by using Eq. (29) are within
±8%.

6. Conclusions
The methodology of optically measuring aerodynamic

loads is developed based on beam deformation theory.  A
two-camera videogrammetric system is used for optical
deformation measurements.  The data reduction models for
extracting the normal force and pitching moment utilize
either the local displacement and slope change or the global
beam deformation profile.  The interpolation methods for
calibration data include the local 2nd-order polynomial fit
and the simple model approach.  On the other hand, the
axial force is obtained by measuring the translational
motion of a movable shaft in a spring/bearing device.  In
order to validate the proposed technique, three simple
metallic beams with different rigidities have been tested to
recover the normal force and pitching moment.  Typically,
the relative errors in the normal force and pitching moment
are, respectively, from ±5% to ±10% and ±2% to ±5% for
the three beams.  A steel sting-model combination was also
calibrated for a direct comparison between the strain gauge
method and the optical method.  The loads obtained by the
optical method have larger errors than the strain gauges.  To
determine the axial force, a three-force beam that allows the
axial translational motion has been designed and fabricated.
The measurement errors in the axial force are within ±8%.
At this stage, the optical method is less accurate than the
well-developed strain gauge method.  Nevertheless, the
optical method has the capability of remote non-contact
measurement and it can be readily integrated with the
optical methods of model attitude measurement.  The
optical method described in this paper can be considered as
an alternative in certain cases where the strain gauge
method cannot be easily applied.  Further research effort
will be made to improve the accuracy of the optical method
in measuring aerodynamic loads and apply the technique to
wind tunnel testing.
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Fig. 4. Calibration facility and videogrammetric system.

Fig. 5. Three simple beams with targets.
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(a) (see caption in Fig. 9)
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Fig. 9. Relative errors in (a) the normal force and (b)

pitching moment for a brass beam when the data reduction
method is based on local displacement and slope change.
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(a) (see caption in Fig. 10)
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Fig. 10. Relative errors in (a) the normal force and (b)

pitching moment for a soft steel beam and a stiff steel beam
when the data-reduction method is based on the local

displacement and slope change.
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Fig. 11. The measured deformation profiles of a brass beam
and the fit by 32 xbxa)x(v +=δ  at the loading position L

= 28.069 in.
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Fig. 12. Relative errors in (a) the normal force and (b)

pitching moment for a brass beam when the data-reduction
method is based on the global deformation profile.

Fig. 13. The sting-model configuration with targets.
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Fig. 14. Comparison between the optical method and strain

gauges in measurements of (a) the normal force and (b)
pitching moment for the steel sting-model configuration.

The optical method is based on the local displacement and
slope change.

Model

Targets



10

Fig. 15. Three-force beam with targets.

Fig. 16. Structure of the spring/bearing device.
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Fig. 17. Relative errors in (a) the normal force and (b)

pitching moment for the three-force beam at different axial
loads.  The data-reduction method is based on the local

displacement and slope change.
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Fig. 18. The axial force as a function of the axial
displacement.
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